## Ellipsoid: -

A is represent to

**x-axis**and b is represent to y and c represents to

**z-axis**

An ellipse surface will be described as an extension of a

**spherical**surface wherever the radii in 3 mutually perpendicular directions will have a special value. The cartesian representation for points over the surface of an ellipsoid focused on the origin is

\[\frac{x^2}{a^2}+ \frac{y^2}{b^2} +\frac{z^2}{c^2}=1\]

## Torus: -

**Torus**is a

**doughnut shape**object shown in the

**figure**

It can be

**generated**by rotating a

**circle**or other

**conic**object about a specified an axis. The

**Cartesian**representation the for points over the surface or a torus can be return in the form

\[r-\sqrt{\frac{x^2}{a^2}+\frac{y^2}{b^2}}+\frac{z^2}{c^2}=1\]

Where a,b,c is the value from origin 0 to axis x,y,z respectively and r is the

**radius**of a given

**surface**.

## Elliptic Cylinder: -

**ellipse**we can create a

**cylinder**with

**x-axis**or

**y-axis**or

**z-axis**

**represented**by

\[\frac{x^2}{a^2}+ \frac{y^2}{b^2}=1\]

Similarly, y-z

**plane**

\[\frac{y^2}{b^2}+ \frac{z^2}{c^2}=1\]

And z-x

**plane**

\[\frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^2} = 1\]

## Elliptic cone: -

**elliptic**

**cone**where a=b=r we have a right

**circular cone**.

## No comments:

## Post a Comment